在高风险领域中采用卷积神经网络(CNN)模型受到了他们无法满足社会对决策透明度的需求的阻碍。到目前为止,已经出现了越来越多的方法来开发可通过设计解释的CNN模型。但是,这样的模型无法根据人类的看法提供解释,同时保持有能力的绩效。在本文中,我们通过实例化固有可解释的CNN模型的新颖的一般框架来应对这些挑战,该模型名为E pluribus unum unum Change Chandn(EPU-CNN)。 EPU-CNN模型由CNN子网络组成,每个工程都会收到表达感知特征的输入图像的不同表示,例如颜色或纹理。 EPU-CNN模型的输出由分类预测及其解释组成,其基于输入图像不同区域的感知特征的相对贡献。 EPU-CNN模型已在各种可公开可用的数据集以及贡献的基准数据集上进行了广泛的评估。医学数据集用于证明EPU-CNN在医学中对风险敏感的决策的适用性。实验结果表明,与其他CNN体系结构相比,EPU-CNN模型可以实现可比或更好的分类性能,同时提供人类可感知的解释。
translated by 谷歌翻译
班级失衡对机器学习构成了重大挑战,因为大多数监督学习模型可能对多数级别和少数族裔表现不佳表现出偏见。成本敏感的学习通过以不同的方式处理类别,通常通过用户定义的固定错误分类成本矩阵来解决此问题,以提供给学习者的输入。这种参数调整是一项具有挑战性的任务,需要域知识,此外,错误的调整可能会导致整体预测性能恶化。在这项工作中,我们为不平衡数据提出了一种新颖的成本敏感方法,该方法可以动态地调整错误分类的成本,以响应Model的性能,而不是使用固定的错误分类成本矩阵。我们的方法称为ADACC,是无参数的,因为它依赖于增强模型的累积行为,以便调整下一次增强回合的错误分类成本,并具有有关培训错误的理论保证。来自不同领域的27个现实世界数据集的实验表明,我们方法的优势超过了12种最先进的成本敏感方法,这些方法在不同度量方面表现出一致的改进,例如[0.3] AUC的%-28.56%],平衡精度[3.4%-21.4%],Gmean [4.8%-45%]和[7.4%-85.5%]用于召回。
translated by 谷歌翻译
预测学生的学习成绩是教育数据挖掘(EDM)的关键任务之一。传统上,这种模型的高预测质量被认为至关重要。最近,公平和歧视W.R.T.受保护的属性(例如性别或种族)引起了人们的关注。尽管EDM中有几种公平感知的学习方法,但对这些措施的比较评估仍然缺失。在本文中,我们评估了各种教育数据集和公平感知学习模型上学生绩效预测问题的不同群体公平措施。我们的研究表明,公平度量的选择很重要,对于选择等级阈值的选择同样。
translated by 谷歌翻译
随着基于数据驱动的基于AI的决策技术在我们日常的社交生活中的越来越多,这些系统的公平性正成为一种关键现象。但是,利用此类系统的一个重要且通常充满挑战的方面是区分其应用程序范围的有效性,尤其是在分配变化下,即当模型被部署在与培训集不同的数据上时。在本文中,我们介绍了一项关于新发布的美国人口普查数据集的案例研究,该数据集是对流行成人数据集的重建,以说明上下文对公平性的重要性,并表明空间分布转移如何影响预测性和公平性相关的性能一个模型。公平感知的学习模型的问题仍然存在着上下文特定的公平干预措施在各州和不同人口群体之间的影响。我们的研究表明,在将模型部署到另一个环境之前,必须进行分配变化的鲁棒性。
translated by 谷歌翻译
小组工作是在教育环境中的一项普遍活动,在该活动中,学生通常会根据他们的偏好将学生分为特定于主题的小组。小组应尽可能地反映学生的愿望。通常,由于研究表明学生在多样化的群体中的学习可能会更好,因此最终的群体也应根据性别或种族等受保护的属性进行平衡。此外,平衡小组红衣主义也是整个小组公平工作负载分配的重要要求。在本文中,我们介绍了多面能力(MFC)分组问题,该问题将学生公平地分配给非重叠的小组,同时确保平衡的组红衣(具有下限和上限),并最大程度地利用成员的多样性。受保护的属性。我们提出了两种方法:一种启发式方法和一种基于背包的方法来获得MFC分组。真实数据集和半合成数据集的实验表明,我们提出的方法可以很好地满足学生的偏好,并分别提供有关基数和受保护属性的平衡和多样化的群体。
translated by 谷歌翻译
公平感知的学习主要关注单个任务学习(STL)。多任务学习(MTL)的公平含义直到最近才被考虑,并提出了一种开创性的方法,该方法考虑了每项任务的公平性准确性权衡以及不同任务之间的绩效权衡。我们提出了一种灵活的方法,而不是刚性公平 - 准确性的权衡表述,该方法通过选择哪个目标(准确性或公平性)来在每个步骤中进行优化。我们介绍了L2T-FMT算法,该算法是经过协作培训的教师网络;学生学会解决公平的MTL问题,而教师指示学生从准确性或公平性中学习,具体取决于每项任务更难学习的内容。此外,每项任务的每个步骤都使用该目标的动态选择可将权衡权重从2T减少到T,其中T是任务数。我们在三个真实数据集上进行的实验表明,L2T-FMT在最先进的方法上的公平性(12-19%)和准确性(最高2%)都提高了。
translated by 谷歌翻译
数据驱动的AI系统可以根据性别或种族等保护属性导致歧视。这种行为的一个原因是训练数据中的编码的社会偏见(例如,女性是不平衡的,这在不平衡的阶级分布情况下加剧(例如,“授予”是少数阶级)。最先进的公平知识机器学习方法专注于保持\ emph {总体}分类准确性,同时提高公平性。在类别的不平衡存在下,这种方法可以进一步加剧歧视问题,通过否认已经不足的群体(例如,\ Texit {女性})的基本社会特权(例如,平等信用机会)的基本权利。为此,我们提出了Adafair,一个公平知识的提升集合,可以在每轮的数据分布中改变数据分布,同时考虑到阶级错误,还考虑到基于部分集合累积累积的模型的公平相关性能。除了培训集团的培训促进,除了每轮歧视,Adafair通过优化用于平衡错误性能(BER)的集成学习者的数量,直接在训练后阶段解决不平衡。 Adafair可以促进基于不同的基于奇偶阶级的公平概念并有效减轻歧视性结果。我们的实验表明,我们的方法可以在统计阶段,平等机会方面实现平价,同时保持所有课程的良好预测性能。
translated by 谷歌翻译
由于决策越来越依赖机器学习和(大)数据,数据驱动AI系统的公平问题正在接受研究和行业的增加。已经提出了各种公平知识的机器学习解决方案,该解决方案提出了数据,学习算法和/或模型输出中的公平相关的干预措施。然而,提出新方法的重要组成部分正在经验上对其进行验证在代表现实和不同的设置的基准数据集上。因此,在本文中,我们概述了用于公平知识机器学习的真实数据集。我们专注于表格数据作为公平感知机器学习的最常见的数据表示。我们通过识别不同属性之间的关系,特别是w.r.t.来开始分析。受保护的属性和类属性,使用贝叶斯网络。为了更深入地了解数据集中的偏见和公平性,我们调查使用探索性分析的有趣关系。
translated by 谷歌翻译
计算机视觉(CV)取得了显着的结果,在几个任务中表现优于人类。尽管如此,如果不正确处理,可能会导致重大歧视,因为CV系统高度依赖于他们所用的数据,并且可以在此类数据中学习和扩大偏见。因此,理解和发现偏见的问题至关重要。但是,没有关于视觉数据集中偏见的全面调查。因此,这项工作的目的是:i)描述可能在视觉数据集中表现出来的偏差; ii)回顾有关视觉数据集中偏置发现和量化方法的文献; iii)讨论现有的尝试收集偏见视觉数据集的尝试。我们研究的一个关键结论是,视觉数据集中发现和量化的问题仍然是开放的,并且在方法和可以解决的偏见范围方面都有改进的余地。此外,没有无偏见的数据集之类的东西,因此科学家和从业者必须意识到其数据集中的偏见并使它们明确。为此,我们提出了一个清单,以在Visual DataSet收集过程中发现不同类型的偏差。
translated by 谷歌翻译
最近的研究表明,用于公平感知机器学习的数据集用于多个受保护的属性(以下称为多歧视)通常是不平衡的。对于关键少数群体中通常代表性不足的受保护群体(例如,女性,非白人等),阶级不平衡问题更为严重。尽管如此,现有的方法仅着眼于整体误差歧视权衡取舍,忽略了不平衡问题,从而扩大了少数群体中普遍的偏见。因此,需要解决方案来解决多歧视和阶级不平衡的综合问题。为此,我们引入了一种新的公平度量,多最大的虐待(MMM),该措施考虑了(多属性)受保护的群体和阶级成员的实例,以衡量歧视。为了解决合并的问题,我们提出了一种提升方法,该方法将MMM成本纳入分销更新和培训后选择了精确,平衡和公平解决方案之间的最佳权衡。实验结果表明,我们的方法与最先进的方法的优越性在跨群体和类别的最佳平衡性能以及对少数族裔阶层中受保护群体的最佳准确性方面的优势。
translated by 谷歌翻译